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Section I: Theory

Theory



1. From Convergence to \
2. From Differential to Derivative \

Relationship?

Introducing

—

Theories:

Origin of Idea?



1. From Convergence to I

Definition (Convergence of Sequence)

The sequence (a,) converges to a if for any € > 0, there exists
N e N*, forany n > N, |a, — a| < €.

“Neighborhood”? l




1. From Convergence to \

Definition (Limit of functions)

We say lim f{x) = a, if for any € > 0, there exists § > 0, such that

X— X0

for any |x — x| < 4, |f(x) — a| < € holds.

o) —al <=
—

From Neighborhood l To Neighborhood l



1. From Convergence to \

Theorem (The Intermediate Value Theorem)

Let f: [a,b] — R be a continuous function. Then for any value y
between f(a) and f(b), there exists c € [a, b| s.t. flc) = y.

connectedness of |a, b

v

™~ e f(la,b|) connected?




1. From Convergence to \

Theorem (The Extremal Value Theorem)

Let f: [a, b] — R be a continuous function. Then f attains both a
maximal value and a minimal value.

f(
Subset of R l

a, b

How can It attach i1ts extremal value? l
—




1. From Convergence to \

Theorem (Cantor’s Theorem of Uniform Continuity)

If f: [a, b] — R is a continuous function, then it is unifomly con-
tinuous on [a, b|.

Uniform Continuity l ﬁ Continuity l
SUongerl
Inverse Implication | h



2. From Difterential to Derivative |

Derivative | f’(fL‘o) _ }Ll_{% f (o + h}i — f (o)
L Natural & Simple Definition l
Differential | dy = f,(ajo) dr
What Is the equation talking about?? |




2. From Differential to Derivative |
Derivative l l_x_{> Differential |

From Differential to \

Differential l *—> Derivative l

PATH? NECESSATY?




Section II: Motivation

Theory Motivation



1. From Convergence to \
Neighborhood? l Convergence? l

Motivation
Compactness l
2. From Difterential to Derivative \

Topology?
dy = f’(aj‘o) dx What Is this? I




Section III: Example

Theory Motivation Example



1. From Convergence to Continuity I

e?

Neighborhood? Convergg

Co

2. From Differe ivative

WharWhhis? |
What? Motivation. I WHY? EXAMPLE! \



1. From Convergence to |
Neighborhood? l How to Define Concept Convergence |

T <=

From Neighborhood l —?—/ To Neighborhood l
Example? l “Preimage” of Neighborhood!l




1. From Convergence to I
Continuity I l—{> F ' (Niey) = Nags YNpay)

Example 1 l Example 3 l
Example 2 l Example ... l

Observation I q Gained Motivation l




1. From Convergence to \

Theorem (The Extremal Value Theorem)

Let f: [a, b] = R be a continuous function. Then f attains both a
maximal value and a minimal value.

L. How can It attach Its extremal
Motivation l lue? l
Example 1 I [CL, OO) q Bounded I
Example 2 | (a, b] # Has All Its Limit Point |




1. From Convergence to I
Examples l q Bounded l Closed l [a, b]

f(la,bl|) Motivation l T (Ni@y) = New YNy
Neighborhood l q Open Intervals |

Example 1 a, 400

o] oo
ey =

Example 2




1. From Convergence to \

Definition (Compactness)

We say A C R is compact, if any its covering of open intervals
I

A C |, (aq, by) admits a finite subcovering A C | (aq,, ba,)-
k=1

Motivation l #

The Extremal VValue Theorem

Compactness Preserved by Continuous Map




1. From Convergence to \

Theorem (Cantor’s Theorem of Uniform Continuity)

If £: [a, b|] — R is a continuous function, then it is unifomly con-
tinuous on |a, b).

Uniform Continuity l 0 for all x ‘\

q Finiteness of “x” l
XL




1. From Convergence to

Consider some positive real number € > 0. By continuity, for any point x in the domain M, there exists some positive

real number &, > 0 such that dy (f(z), f(y)) < €/2 when dy;(z,y) < d., i.e., afact that y is within §,, of x CO n'“ Nnu |ty
implies that f(y) is within /2 of f(x).

Let U, be the open 4, /2-neighborhood of z, i.e. the set

Since each point z is contained in its own U,,, we find that the collection {U,, | = € M} is an open cover of M. Since
M is compact, this cover has a finite subcover {Uy,, , Uy, ,...,U,, } where z1,z2,...,z, € M. Each of these

open sets has an associated radius 8, /2. Let us now define § = llélz_iéln dz, /2, i.e. the minimum radius of these open F| Nniteness

sets. Since we have a finite number of positive radii, this minimum ¢ is well-defined and positive. We now show that
this & works for the definition of uniform continuity. \

Suppose that dys(z,y) < d for any two x, y in M. Since the sets U, form an open (sub)cover of our space M, we

1
know that & must lie within one of them, say U, . Then we have that dj/(z, ;) < 55%. . The triangle inequality then

implies that

dae(@:,) < dut(w0,2) + dys(2,) < 505, +8 < 3, Compactness

implying that & and y are both at most §,,. away from x;. By definition of §,, , this implies that dy (f(z;), f(z)) and
dy (f(z;), f(y)) are both less than £/2. Applying the triangle inequality then yields the desired

dy (f(z), f(y)) < dn(f(x;), f(x)) +dn(f(x;:), fy)) < % 4+

E

225.



1. From Convergence to I
Observation | ﬁ Motivation l

I Example 1 l Example 2 l

Motivation l h Concept l
Path I. O-M-EEE-C-M-O |




2. From Differential to Derivative
Derivative l f'(xg) = }Lm(l) f (2o + h}z — (o)

Motivation l
o/ (h) = f'(xo)h q Linear Transformation l




2. From Difterential to Derivative |
Motivation # f(xo+h)— f(xo) = f(x9)h + o(h)

'l
fl:t*ﬂ}.
Linear Transformation l secant

Langent

Use Linear Maps to Approach the Difference! l flt) g — —

£ 1992 Encyclopadia Britannica, Inc.



2. From Differential to Derivative
Motivation I q Use Linear Map to Aplproach the

Definition (Differential)

Take f: R" — R and X* € R". If there exists a linear map A :
R" — R such that

X’ + h) — f(x’) = A(h) + o(h),

then we call A the differential of f at x°, denoted by df,o = A €
L(R",R).

Motivation l What Is the form of the linear map? i



2. From Difterential to Derivative \

L What Is the
Motivation l ~oefficients? l af

8£Uk

T

Motivation l # Concept: Partial Derivative




2. From Difterential to Derivative |

Derivative | q

Motivation l

Concept: Partial Derivative

Differential l
Motivation h
tten




Section IV: Beyond (Mathematics)

Theory Motivation Example Beyond



Beyond Mathematics Get OUT of Abstract
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Beyond Mathematics

Theory

h ‘ Motivation

Our Opinions l Experience l Culture l
Difference i1s Normal! l Education l l



Beyond Mathematics

h ' Example

Theory

Our Opinions l Special Cases l Argument l
How to Act on Opinions?l Counterexampll Hearsay...... l



Section V: Q &A Section

Q&A

Theory Motivation Example Beyond Section



Question by you & Answer of
mine

Q&A
Section

My Question for You First of All!




In Mathematics We Study... I

S Structure

-
Maps A - B

Preserving The ]
Nicolas Bourbaki
What Is the case In Mathematical Analysis? I m
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Section

| Real for the time \
Q&A

Question by you & Answer of

mine

m m m . Finite Gifts |
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