

From Simple Theory to Comprehensive Cultivation

My naive opinion on Mathematical Analysis Learning

School of the Gifted Young, USTC. 华罗庚数学科技英才班

luosw@mail.ustc.edu.cn

Dec 22 2024

Siwei Luo

Table of Contents

Section I: Theory

Introducing **Theories:**

1. From Convergence to Continuity

2. From Differential to Derivative

Relationship?

Origin of Idea?

1. From Convergence to Continuity **Definition (Convergence of Sequence)**

 $N \in \mathbb{N}^*$, for any n > N, $|a_n - a| < \varepsilon$.

The sequence (a_n) converges to a if for any $\varepsilon > 0$, there exists

$$|a_n - a| < \varepsilon$$

'Neighborhood''?

Definition (Limit of functions)

We say $\lim_{x\to x_0} f(x) = a$, if for any $\varepsilon > 0$, there exists $\delta > 0$, such that for any $|x - x_0| < \delta$, $|f(x) - a| < \varepsilon$ holds.

$$|x - x_0| < \delta$$

From Neighborhood

$$|f(x) - a| < \varepsilon_0$$

To Neighborhood

Let $f: [a, b] \to \mathbb{R}$ be a continuous function. Then for any value y

Theorem (The Extremal Value Theorem)

maximal value and a minimal value.

Subset of
$$\mathbb{R}$$

Let $f: [a, b] \rightarrow \mathbf{R}$ be a continuous function. Then f attains both a

How can it attach its extremal value?

Theorem (Cantor's Theorem of Uniform Continuity)

If $f : [a, b] \rightarrow \mathbf{R}$ is a continuous f **tinuous** on [a, b].

If $f: [a, b] ightarrow {f R}$ is a continuous function, then it is **unifomly con**-

$$f_{0}) = \lim_{h \to 0} \frac{f(x_{0} + h) - f(x_{0})}{h}$$

Natural & Simple Definition

$$\mathrm{d}y = f'(x_0) \,\,\mathrm{d}x$$

What is the equation talking about??

From Differential to Derivative

Differential

PATH?

Differential

Derivative

NECESSATY?

Section II: Motivation

Geometry?

1. From Convergence to Continuity

Neighborhood?

Convergence?

Compactness

2. From Differential to Derivative

$$= f'(x_0) \,\mathrm{d}x$$

uy

What is this?

Section III: Example

Example

What? Motivation.

I. From Convergence to Continuity

WHY? EXAMPLE!

Neighborhood?

$$|a_n - a| < \varepsilon$$

How to Define Concept Convergence

$$|f(x) - a| < \varepsilon_0$$

To Neighborhood

"Preimage" of Neighborhood!

Continuity

 $|x - x_0| < \delta$ $|f(x) - a| < \varepsilon_0$

Gained Motivation

Theorem (The Extremal Value Theorem)

maximal value and a minimal value.

- Let $f: [a, b] \rightarrow \mathbf{R}$ be a continuous function. Then f attains both a
 - How can it attach its extremal value?
 - Bounded Has All Its Limit Point

$$f^{-1}(N_{f(x_0)}) = N_{x_0}, \quad \forall N_{f(x_0)}$$

Definition (Compactness)

 $A \subset \bigcup_{\alpha} (a_{\alpha}, b_{\alpha})$ admits a finite subcovering $A \subset \bigcup_{\alpha} (a_{\alpha_k}, b_{\alpha_k})$.

We say $A \subset \mathbf{R}$ is compact, if any its covering of open intervals k=1

$$f([a,b])$$

Compactness Preserved by Continuous Map

Theorem (Cantor's Theorem of Uniform Continuity)

If $f : [a, b] \rightarrow \mathbf{R}$ is a continuous f **tinuous** on [a, b].

If $f: [a, b] ightarrow \mathbf{R}$ is a continuous function, then it is **unifomly con**-

Consider some positive real number $\varepsilon > 0$. By continuity, for any point x in the domain M, there exists some positive real number $\delta_x>0$ such that $d_N(f(x),f(y))<arepsilon/2$ when $d_M(x,y)<\delta_x$, i.e., a fact that y is within δ_x of ximplies that f(y) is within $\varepsilon/2$ of f(x).

Let U_x be the open $\delta_x/2$ -neighborhood of x, i.e. the set

$$U_x = \left\{ y \mid d_M(x,y) < rac{1}{2} \delta_x
ight\}.$$

Since each point x is contained in its own U_x , we find that the collection $\{U_x \mid x \in M\}$ is an open cover of M. Since M is compact, this cover has a finite subcover $\{U_{x_1}, U_{x_2}, \dots, U_{x_n}\}$ where $x_1, x_2, \dots, x_n \in M$. Each of these open sets has an associated radius $\delta_{x_i}/2$. Let us now define $\delta=\min_{1\le i\le n}\delta_{x_i}/2$, i.e. the minimum radius of these open sets. Since we have a finite number of positive radii, this minimum δ is well-defined and positive. We now show that this δ works for the definition of uniform continuity.

Suppose that $d_M(x,y) < \delta$ for any two x,y in M. Since the sets U_{x_i} form an open (sub)cover of our space M, we know that x must lie within one of them, say U_{x_i} . Then we have that $d_M(x,x_i) < rac{1}{2}\delta_{x_i}$. The triangle inequality then implies that

$$d_M(x_i,y) \leq d_M(x_i,x) + d_M(x,y) < rac{1}{2}\delta_{x_i} + \delta \leq \delta_{x_i},$$

implying that x and y are both at most δ_{x_i} away from x_i . By definition of δ_{x_i} , this implies that $d_N(f(x_i), f(x))$ and $d_N(f(x_i), f(y))$ are both less than $\varepsilon/2$. Applying the triangle inequality then yields the desired $d_N(f(x),f(y))\leq d_N(f(x_i),f(x))+d_N(f(x_i),f(y))<rac{arepsilon}{2}+rac{arepsilon}{2}=arepsilon.$

Continuity

Finiteness

Observation

Motivation

Path I: O-M-EEE-C-M-O

$$\mathscr{A}(h) = f'(x_0)h$$

$$= \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

$$h) - f(x_0) = f'(x_0)h + o(h)$$

Linear Transformation

Linear Transformation

Use Linear Maps to Approach the Difference!

$$f(x_0 + h) - f(x_0) = f'(x_0)h + o(h)$$

$$= f'(x_0)h$$

Definition (Differential)

Take $f: \mathbf{R}^n \to \mathbf{R}$ and $x^0 \in \mathbf{R}^n$. If there exists a linear map \mathcal{A} : $\mathbf{R}^n \to \mathbf{R}$ such that

$$f(x^0+h)-f(x^0)=\mathcal{A}($$

then we call \mathcal{A} the **differential** of f at x^0 , denoted by $df_{x^0} = \mathcal{A} \in \mathcal{A}$ $L(\mathbf{R}^n,\mathbf{R}).$

Motivation

Use Linear Map to Approach the Difference!

- (h) + o(h),

What is the form of the linear map?

$$\mathcal{A}(h_1,\cdots,h_n)=a_1h_1+\cdots$$

$$a_k = \frac{\mathcal{A}(he_k)}{h} = \lim_{h \to 0} \frac{f(x^0 + he_k)}{h}$$

Motivation

$$\cdot + a_n h_n$$

What is the coefficients?

$$-f(x_0)$$

$$\partial f \partial x_k$$

Concept: Partial Derivative

Differential

Section IV: Beyond (Mathematics)

Beyond Mathematics

Skills & Literacy!

Similar Logic

shutterstr.ck*

IMAGE ID: 481571008

Theory

Our Opinions

Difference is Normal!

Motivation

Education

Theory

Our Opinions

How to Act on Opinions?

Example

Special Cases

Argument

Counterexampl

e

Section V: Q&A Section

My Question for You First of All!

Question by you & Answer of

Nicolas Bourbaki

Preserving The Structure

What is the case in Mathematical Analysis?

Thank you!

School of the Gifted Young, USTC. 华罗庚数学科技英才班

Dec 22 2024

Siwei Luo

luosw@mail.ustc.edu.cn

Luosw Q: 2986497980

Question by you & Answer of mine

